YOLOV5 Implementation

Computer Vision Serial Interface application

Some time you need computer vision on your drone in order to interact with your subject or make automatic decision

- This works in conjunction with the Synerduino Board and INAV PLC
- Requires FPV camera and OTC UVC Receiver

Of the Following Board

- Synerduino Arduino
- Synerduino STM

Computer Vision Serial Interface application

Teaching the Machine what its Looking For and the Condition of the subject its looking at

Readme.txt contains all the information needed for setting up your Yolov5 synerduino

yolov5-install-requirements.bat

yolov5-custom-detect.bat

See: Yolov5 tutorial on custom Train data and image Annotators https://www.makesense.ai/

This Runs the application Yolov5 with Synerduino Detection

python SynerCV2/detectardu20.py --source 0 --weights yolov5s.pt --img 640 --class 0

Install requirement .bat Batch install all your Yolov5 requirements Edit : pip install -r SynerCV2/requirements.txt

yolov5-custom-train.bat

Datas - contains all the Parameters for configuring your CV Serial Coms and instructions to send to the Arduino

datas folder contains the readme file for settings configuration and documentation datas/baud.txt - change baud datas/com.txt - change Serial com datas/ipt.txt - object location on screen datas/noct.txt - names or classes datas/soct.txt - number of objects count

Syner CV2 - contains all the Yolov5 applications detectardu20.py – Contains the Python codes and the PT Train image files

SynerCV2

ArduinoCV - this contains the Arduino sketches and adp files of Ardublock (Arduino 1.8.18 compatible)

Tool folder containing Ardublock must be extracted in thisPC/Documents/Arduino/Tools

This sketch is used to convert the Serial communication coming from the YOLOV5 and Converting it into PWM or ADC output for the Arduino companion board to read and send appropriate input to Synerduino board to registred

Arduino Nano

- D3 (ADC V) A0
- D5 (RC PWM) A14
- D6 (RC PWM) A15

Synerduino STM

This would be utilized as output PWM feed from Arduino to Synerduino and INAV PLC Arduino Mega

- D12 (ADC V) Voltage ADC
- D13 (ADC I) –Current ADC
- D3 (BEEP/RSSI) –RSSI ADC

Synerduino STM PWM SBUS Converter Method

Also utilizing an Arduino but this time using the Sbus Converter to respond to RC PWM inputs Generated by the Arduino in respond to the serial input

Companion board

There are several reason you may add a companion controller or computer to perform tasks separate from the Synerduino but need to be able to communicate with it to perform fight modifying action or Data Logging or even extended sensor array that is more than the standalone synerduino board physically accommodate

For Companion board add on options there are several Levels of installation

- ADC Analog 0V-5V input
- Sbus/PWM RC PWM 50 hz (1000ms to 2000ms)
- Serial MSP Telemetry
- PWM Output

ADC Companion

Pulse Width Modulation

The average voltage depends on the duty cycle, or the amount of time the signal is ON versus the amount of time the signal is OFF in a single period of time.

This works with most Arduino PWM motor driver scripts

0-225

SBUS/PWM Companion

As RC servo standard this can be taken as an advantage for multiple data points for inputs

This works on Most Arduino Servo Scripts

FPV Standalone / Synerduino Arduino

This requires no introduction as it uses a BEC to supply a standalone FPV25mw camera with integrated VTX

This also can be apply to split camera and VTX sets as well (some Standalone VTX can support 2s to 6s meaning they can directly hook up to the main batter Pads with requiring a BEC supplement)

FPV camera 25mw Standalone

BEC or Buck converter supplying extra power

Hardware Setup / Synerduino Arduino

The is useful for analog base inputs

PWM, or pulse width modulation is a technique which allows us to adjust the average value of the voltage that's going to the electronic device by turning on and off the power at a fast rate.

This method is the most simplest interface that one can incorporate even the most basic of logic circuits for simple tasks

Arduino Nano

The Arduino nano on top of a Prototyping shield serves 2 purpose

- Provide a bypass from the Arduino mega to the Synerduino shield
- Allows PWM from the D3 of the Nano to interface with the A0 of the Mega
- Purchase an Arduino NANO without the headers installed (Omit the Top SPI headers) and directly solder the Nano to the Development shield via wire to
 ensure it still fits under the Synerduino shield

An 2nd Bluetooth or Serial device required to interface with a computer running Yolov5

Serial 0 of the Arduino Board

Note: this development shield is the 2nd layer under the Synerduino board And the Arduino mega on the 3rd Layer

FlyWii GUI Setup

First connect the Drone and go to GUI settings and Change the Battery Cell Count to 1s as we are using it for sensor signal mode.

Available in FlywiiGUI18 select Excel Readable and Save settings it will run when you hit the Start Log button on top or when you setup start logging on connect(warning it will start recording the moment serial connection is on and would incur useless idle data)

Change the Vbat scale to match the voltage range your sensors is capable of delivering (in my case 70) 0V-4.6V analog Use the Vbat scale to adjust the output till the number Matches the ppm concentration numerical value of the Control Sensor

ght Deck	Mission	Flight Tuning	FC Config	RC Control S	Settings Sens	or Graph Video	Capture GUI Sett	ings CLI					
Servo sett	ings —	Eurotico	Poueme	Data	Nia	Middle		Battery Monito	ring ———				
		runcuon	neverse	nale	(Million	Middle	MdX	VBat Scale		70 🗘	VBat	3.5 volts <	
Servo1	Unused							VBat warnin	g level 1	110 ÷			
Servo2	Unused							VBat warnin	ig level 2	110 ÷			
Servo3	Unused							VBat Critical	l level	109 ÷			
Servo4	Unused							Power Meter	r Alarm	0 🗘			
Servo5	Unused							- Throttle limits -					
Servo6	Unused							MinThrottle		1150 🛟	1		
C7	Unused							Max Throttle	•	1850	'		
Servo7	Unused								- 4	1000			
Servo8	Unused								nd	1000			
Magnetic	Decliniation					etime (PLog)		' Failsafe Thr 	rottle	0 ÷			
WEST	~ 2	🔹 degree	24 🗘 🕯	ninutes (-;		Rights (arm)	0						
Chack	our locatio	o at latto://max	natio da clie			Total armed tim	ю ()						
<u>uneur j</u>		TT OL TRUP.//IIIO	a lette de cali	duon.com/									

For A0 (Aux input)

Aux sensor should do a read out like this depending if your sensor is resistance base it go up or down

In GUI Settings you need ro indicate which folder the Log data is to be save to

Select Log button anytime you want to start and when you want to see the logs select log browser

For Information on how to export as CSV and create Charts and Graphs on Spread sheet

see :

Add on Integration tab Gas Sensors and ADC Data Loggging

FPV Standalone / Synerduino STM

• Requires FPV camera and OTC UVC Receiver

FPV Standalone

This requires no introduction as it uses a BEC to supply a standalone FPV25mw camera with integrated VTX

This also can be apply to split camera a. VTX sets as well (some Standalone VTX can support 2s to 6s meaning they can directly hook up to the main batter Pads with requiring a BEC supplement)

FPV camera 25mw Standalone

FPV Standalone / Synerduino STM

FPV with SERIAL OSD

The Telemetry can also use the

• Requires FPV camera and OTC UVC Receiver

Hardware Setup / Synerduino STM

The is useful for analog base inputs

PWM, or pulse width modulation is a technique which allows us to adjust the average value of the voltage that's going to the electronic device by turning on and off the power at a fast rate.

This method is the most simplest interface that one can incorporate even the most basic of logic circuits for simple tasks

Arduino Mega

- D12 (ADC V) D13 (ADC I) D3 (BEEP/RSSI) D12 is align to the Synerduino V0.1 board ADC pin directly
- Analog pins A10 ,A11 ,A12,A13 , A14 are free for Sensor inputs
- DIY prototyping segment are also free for other Digital pins directly below it
- Motor PWM pins are also connected to the Analog pin S1-A0 S2-A1 S3-A2 S4-A3 as feedback loop to read pwm data off the motor or servo

UART Serial Devices

SBUS Converter Method

For those who Uses PWM or PPM Receiver Require to add an Additional PWM/PPM/SBUS Converter to RC2/UART2

This method also does work should you require precise PWM input

Same as Radio Transmitters with PL Jacks

Synerduino STM

INAV Programming (PLC)

This is the definitive feature of INAV combine with the Synerduino Shield .

This PLC function allows you to program upto 8 GVAR and instructions from timer to sensor conditions to trigger a Flight mode action or control action of your Drone

			5.48 A 💎 d	Gyro Accel M	ag Baro GPS Flow Sonar	Speed IMU2 Profile 1	No dataflash chip found Battery profi	le 1 💠 Disconne
2-10-17 @ 21:20:36 MultiWii (2-10-17 @ 21:20:36 Flight co (2-10-17 @ 21:20:36 Running (2-10-17 @ 21:20:37 Board: S (2-10-17 @ 21:20:37 Unique)	API version received - 2.4.0 ontroller info, identifier: INAV ; firmware released on: Sep ;YDU, version: 0 device ID received - 0x44002	/, version: 5.1.0 11 2022 13:15:57 73037510e36363538						
Configuration Failsafe	Logic Conditio	PID Controllers						DOCUMENTATIO
PID tuning Advanced Tuning Programming	gvar 0 8	GVAR 1 549	gvar 2 0	gvar 3 O	gvar 4 O	gvar 5 O	gvar 6 O	gvar 7 0
Receiver	# Enabled	Operation		Operand A	c	perand B	Active	Flags Stat
Modes	0	Increase GVAR ~	Value	♥ 0	Value 🗸 1		Always	~
Adjustments	1	Greater Than 🗸	Global Variable	✓ 0 ✓	Value 🗸 55		Always	✓
GPS	2	Set GVAR 🗸	Value	♥ 0	Value v 0		Logic Condition	on 1 🗸
Magnetometer	3	Set GVAR 🗸	Value	♥ 1	Flight Vbat [centi-Volt] [1V = 100]	✓ Always	~
Aission Control	4	Greater Than 🗸	Global Variable	v 1 v	Value 🗸 545		Always	~
)SD	5	Override RC Channel	Value	✓ 6	Value × 55		Logic Conditio	on 4 🗸 🖉
		Тлю						
LED Strip	0	Thuc •						
LED Strip Sensors		(T						
LED Strip Sensors Tethered Logging	7	True ~						
LED Strip Sensors Tethered Logging Blackbox	7	True						

ADC Companion

The is useful for analog base inputs

PWM, or pulse width modulation is a technique which allows us to adjust the average value of the voltage that's going to the electronic device by turning on and off the power at a fast rate.

This method is the most simplest interface that one can incorporate even the most basic of logic circuits for simple tasks

Arduino Mega

- D12 (ADC V) D13 (ADC I) D12 is align to the Synerduino V0.1 board ADC pin directly
- Analog pins A10 ,A11 ,A12,A13 , A14 are free for Sensor inputs
- DIY prototyping segment are also free for other Digital pins directly below it
- Motor PWM pins are also connected to the Analog pin S1-A0 S2-A1 S3-A2 S4-A3 as feedback loop to read pwm data off the motor

Data Analytic Intervention Via Companion board

🔅 Configuration

Similar Low battery failsafe the DAI Starts by configure your Battery Cell Count ,Current and Voltage scale this way you can adjust to your sensors while calibrating the value output.

But in this case instead of the Battery its ADC data would be inputed from the Companion Controller (Arduino)

This would define your signal point on where to trigger.

ADC V (Battery Voltage Monitoring) could be input 1 D12 ADC I (Battery Current Monitoring) could be input 2 D13

You can set your Arduino to input a specific PWM indicating a Data is send

Voltage and Curr	ent Sensors	
	Battery voltage monitoring	
ADC ~	• Voltage Meter Type	
Raw ~	 Voltage source to use for alarms and telemetry 	8
450	Voltage Scale	
11.64	Battery Voltage	
	Battery current monitoring	
ADC ~	Current Meter Type	
400	Current Meter Scale	8
0	Offset in millivolt steps	
48.24	Battery Current	

Battery Settings		0
3	Number of cells (0 = auto)	0
4.25	Maximum cell voltage for cell count detection	0
3.3	Minimum Cell Voltage	
4.2	Maximum Cell Voltage	
3.5	Warning Cell Voltage	
mAh 🗸	Battery Capacity Unit	
0	Capacity	
	Warning Capacity (remaining %)	
	Critical Capacity (remaining %)	

Synerduino STM SBUS/PWM Companion

In the world of Robotics /RC /Drones There is always a standard of PWM called the RC PWM its set at 50hz And range from 1000us to 2000us Of pulse this controls the value of the servos

This is said to be useful as interface when you need to have a semi digital range you want to instruct vehicle to do

- Analog pins A10 ,A11 ,A12,A13 , A14 are free for Sensor inputs
- DIY prototyping segment are also free for other Digital pins directly below it
- Motor PWM pins are also connected to the Analog pin S1-A0 S2-A1 S3-A2 S4-A3 as feedback loop to read pwm data off the motor

This Setup requires an

Data Analytic Intervention SBUS Converter Method

📩 Receiver

In Sbus Converter Method We Wanted the RC Channel 7 and 8 to be free for the Mode Trigger this would be active when a an PWM value is send by the companion board (Arduino)

The PWM is RC Servo PWM this is useful if you need a properly define value

INAV Configurator			×
CONFIGURATOR 60.0.FP2 EC FIRMWARE 60.0 [SVNER		11.64 V Syro Accel Ma	g Baro GPS Flow Sonar Speed MU2 No dataflash hip found Chip Found Disconnect
2023-01-04 @ 10:37:51 MultiW 2023-01-04 @ 10:37:51 Flight c 2023-01-04 @ 10:37:51 Runnin	Vii API version received - 2.4.0 controller info, identifier: INAV , version: 6 ng firmware released on: Dec 14 2022 14 :	.0.0 20:05	Hide Log Scroll
2023-01-04 @ 10:37:51 Board: 2023-01-04 @ 10:37:51 Unique	: SYDU , version: 0 e device ID received - 0x32002a3132510c	30313530	
🖌 Setup	Receiver		DOCUMENTATION
Calibration A Mixer	Please read receiver chapter of the	documentation. Configure serial port (if required), receiver mode (serial/ppm/pv	vm), provider (for serial receivers), bind receiver, set channel map, configure channel endpoints/range on TX so that all channels go
Outputs	from ~1000 to ~2000. Set midpoint (reverse the channel in the TX. Do no IMPORTANT: Before flying read fails	default 1500), trim channels to 1500, configure stick deadband, venity behaviou it apply any other mixing in the TX. afe chapter of documentation and configure failsafe.	, when TX is off or out of range. Make sure that the channel values all increase when you push the sticks up and to the right. If not,
🖌 Ports	Channel Map	RSSI Channel	Receiver Mode
Configuration	TAER	 ✓ Disabled 	Receiver type
h PID tuning	Roll [A]	1500	Note: Remember to configure a Serial Port (via Ports tab) for the serial receiver
g Advanced Tuning	Yaw [R]	1500	SBUS Serial Receiver Provider
Programming	CH 5	885 1675	OFF Serial Port Inverted (comparing to protocol default)
Receiver	CH 6 CH 7	15 <mark>00</mark> 15 <mark>00</mark>	AUTO Serial receiver half-duplex
Adjustments	CH 8 CH 9	1500 1500	RC Smoothing
GPS	CH 10	1500	OFF Use automatic RC smoothing
) Magnetometer	CH 12	1500	50 Manual LPF Hz
Mission Control	CH 13	1500	Auto Smoothing Easter
OSD Oschet error: 0 12C error: 0	▼ Cycle Time: 508 CPU Load: 17% N	ASP version- 2 MSP load- 0.3 MSP round trip: 26 HW round trip:	17 Dran ratio: 0% 6.0.0-F
		Links	s ^R ∧ ENG 1042 AM

Data Analytic Intervention

In this sample we use ADC I (Flight Current) as a sample where we hook up the sensor to

0# set GVAR Operand A = Value 0 Operand B = Flight Current / Vbat Volt Active = Always

First we need to visualize the Current input in this case GVAR0 4849

1# Greater than Operand A = Flight Current / Vbat Volt Operand B = Value 2670 Active = Always

Operand B can be change depending on the Arduino input value want to trigger from

2# Override RC Channel Operand A = Value 7 Operand B = Value 200 Active = Logic condition 1

Here is where the magic happens when the conditions are met in Logic #1 with an active Status this would trigger the Value 7 (Ch7) to set PWM to 200 overriding the RC input and triggering the servo or Payload

Note: if your RC Channel is occupied by an Receiver channel lets say 7 or 8 and you don't want to override it. You can set the next free channel 9 - 10

Synerduino STM

Data Logging

For Information on how to export as CSV and create Charts and Graphs on Spread sheet

See:

Add on Integration Synerduino STM ADC sensors in the Implementation Tab

Tethered Logging Page

